[1] There isn't really any good reason to have two separate classes: this separation is purely because of a technical limitation in some of today's C++ compilers. If the two classes were combined into one, then there would be no way to declare the return types of the iterator tag functions iterator_category, distance_type and value_type correctly. The iterator traits class solves this problem: it addresses the same issues as the iterator tag functions, but in a cleaner and more flexible manner. Iterator traits, however, rely on partial specialization, and many C++ compilers do not yet implement partial specialization. Once compilers that support partial specialization become more common, these two different reverse iterator classes will be combined into a single class. [2] The declarations for rfirst and rlast are written in this clumsy form simply as an illustration of how to declare a reverse_bidirectional_iterator. List is a Reversible Container, so it provides a typedef for the appropriate instantiation of reverse_bidirectional_iterator. The usual way of declaring these variables is much simpler: [3] Note the implications of this remark. The variable rfirst is initialized as reverse_bidirectional_iterator<…> rfirst(V.end());. The value obtained when it is dereferenced, however, is *(V.end() – 1). This is a general property: the fundamental identity of reverse iterators is &*(reverse_bidirectional_iterator(i)) == &*(i – 1). This code sample shows why this identity is important: if [f, l) is a valid range, then it allows [reverse_bidirectional_iterator(l), reverse_bidirectional_iterator(f)) to be a valid range as well. Note that the iterator l is not part of the range, but it is required to be dereferenceable or past-the-end. There is no requirement that any such iterator precedes f.Notes
list
list