home | login | register | DMCA | contacts | help | donate |      

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


my bookshelf | genres | recommend | rating of books | rating of authors | reviews | new | форум | collections | читалки | авторам | add
fantasy
space fantasy
fantasy is horrors
heroic
prose
  military
  child
  russian
detective
  action
  child
  ironical
  historical
  political
western
adventure
adventure (child)
child's stories
love
religion
antique
Scientific literature
biography
business
home pets
animals
art
history
computers
linguistics
mathematics
religion
home_garden
sport
technique
publicism
philosophy
chemistry
close

реклама - advertisement



Параллельная обработка

Различные приемы параллельной обработки позволяют базе данных полностью задействовать все аппаратные возможности. Выборка и анализ больших объемов информации может требовать очень больших ресурсов. По счастью, при обработке базы данных доступ к ней может осуществляться параллельно, после чего собранные данные можно анализировать независимо и также параллельно. Обработка баз данных — один из примеров практического использования массового параллелизма, который мы вкратце затронули в главе 2.

IBM несколько модифицировала AS/400 и DB2/400, что позволило применить массовый параллелизм при работе с базой данных. Впервые поддержка параллельной обработки ввода-вывода появилась в V3R1, что позволило воспользоваться возможностями аппаратной архитектуры AS/400, имеющей как основные процессоры, так и вспомогательные, и ввести параллельную обработку на уровне процессора ввода-вывода (IOP) для одного задания. Мы подробно рассмотрим IOP в главе 10, а сейчас, забегая вперед, скажу, что в мощной AS/400 их может быть установлено несколько сотен, причем к разным IOP подключают множество дисковых накопителей. Параллельный ввод-вывод позволяет обрабатывать пользовательский запрос к базе данных несколькими IOP одновременно. Таким образом, устраняется одна из самых серьезных проблем, мешающих многим системам достичь высокой производительности: задержки при выполнении ввода-вывода.

В главе 2 мы говорили о поддержке SMP в AS/400, когда все основные процессоры работают параллельно с общей памятью. При большинстве видов обработки отдельные задания выполняются на разных процессорах, при необходимости используя общие области памяти. При обработке запросов к базе данных каждый основной процессор может обрабатывать часть задачи. Именно так работает средство параллельной обработки DB2/400. Запрос разбивается на отдельные, независимые подзапросы, которые выполняются параллельно несколькими основными процессорами, что позволяет значительно сократить время обработки. Задать использование нескольких процессоров при обработке запроса можно с помощью соответствующей опции команды «CHGQRYA» (Change Query Attribute).

Данный метод повышает производительность таких запросов, как поиск в таблице, группирование (group-by), поиск в индексе и соединение (join). Поддержкой параллельной обработки базы данных на системах SMP пользуются также некоторые внутренние функции SLIC, например, построение индекса (подробно об этом мы поговорим в разделе «Машинный индекс»). Параллелизм присутствует на всех системах версий 3 и 4, но параллельное построение индекса — только на RISC-системах.

AS/400 также поддерживает конфигурации MPP. При этом несколько систем AS/ 400 с помощью высокоскоростных линий соединяются друг с другом в кластер. Один из способов такого соединения — через волоконно-оптический кабель с помощью продукта OptiConnect. Для объединения машин серии AS/400е подходит также соединение SAN, позволяющее достичь еще больших скоростей. Распределение базы данных по дискам всех систем кластера позволяет создавать очень большие базы, с которыми параллельно работают несколько сотен процессоров.

IBM называет такую конфигурацию MPP слабо связанной параллельной системой базы данных, в связи с отсутствием разделения памяти за пределами отдельной системы в кластере. Здесь используется подробно обсуждавшийся в главе 2 подход shared-nothing, похожий на тот, что применяется в SP2. Различие в том, что узлы кластера AS/400 находятся в разных физических корпусах, но, несмотря на это, для пользователя кластер выглядит как единая база данных.

Технология слабо связанной параллельной базы данных позволяет разбивать запросы на части, с которыми может справиться отдельный узел. В отличии от SMP-па-раллельной базы данных, у каждого узла — собственные память и дисковое пространство. Каждый узел кластера работает с порцией физического файла или таблицы, и запрос к нему выполняется для соответствующей порции файла. Каждый узел может содержать один или несколько процессоров, ведь узел — это просто AS/400.

Приложение, выполняющееся на любом компьютере кластера, может работать с базой так, как если бы она полностью размещалась на этом компьютере. Распределенность базы по узлам кластера делает DB2/400 прозрачной как для приложений, так и для конечного пользователя. Для задания имен системам в группе узлов в CL были введены новые команды, к некоторым командам были добавлены новые параметры для поддержки распределения файлов базы по узлам. После рассредоточения по узлам, файл при выполнении операций вставки, обновления и удаления выглядит как локальный.

Главное преимущество слабо связанных параллельных систем — отсутствие верхнего предела количества узлов, что означает практически неограниченный рост производительности и емкости. Возможности расширения концепции кластеров AS/400 в будущем мы рассмотрим в главе 12.


Серверы баз данных | Основы AS|400 | Многомерные базы данных (MDD)