home | login | register | DMCA | contacts | help | donate |      

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


my bookshelf | genres | recommend | rating of books | rating of authors | reviews | new | форум | collections | читалки | авторам | add
fantasy
space fantasy
fantasy is horrors
heroic
prose
  military
  child
  russian
detective
  action
  child
  ironical
  historical
  political
western
adventure
adventure (child)
child's stories
love
religion
antique
Scientific literature
biography
business
home pets
animals
art
history
computers
linguistics
mathematics
religion
home_garden
sport
technique
publicism
philosophy
chemistry
close

реклама - advertisement



Симметричное мультипроцессирование

Ранее мы видели, что система симметричного мультипроцессирования (SMP) дает возможность ОС обрабатывать задачи на любом свободном процессоре или на всех процессорах сразу, при этом память остается общей для всех процессоров. Именно так устроена n-канальная (n-way) обработка на AS/400. Любой компонент ОС, включая диспетчер задач, может выполняться на любом или на всех процессорах системы.

Диспетчер задач в n-канальной системе автоматически обеспечивает баланс нагрузки между процессорами, не требуя изменения программ, написанных для однопроцессорной архитектуры. Так как память для всех процессоров общая, диспетчер задач, независимо от процессора, на котором он выполняется, имеет доступ ко всем очередям, включая TDQ. Однако, диспетчер задач не ограничен тем процессором, на котором он выполняется, — он может вызвать переключение задач и на другом процессоре.

В многопроцессорной системе одновременно исполняется несколько задач — по одной на процессор. Упрощенно, следует лишь направить на выполнение верхние n TDE из TDQ. Естественно, эти n задач имеют наивысшую приоритетность среди всех готовых задач. Однако такой простой метод часто только кажется наилучшим.

Предположим, что у нас есть две задачи, А и В, исполняющиеся на процессорах 1 и 2 в двухпроцессорной системе. Предположим далее, что задача С, приоритет которой выше чем у А, но ниже чем у В, выходит из состояния ожидания. Ее TDE будет добавлен в очередь TDQ непосредственно перед TDE задачи А. Диспетчер задач выполнит переключение задач на процессоре 1, чтобы начать исполнение задачи С. Теперь допустим, что задача В на процессоре 2 либо завершилась, либо перешла в состояние ожидания. Приоритет задачи А — наивысший среди готовых задач, и ее следует направить на процессор 2. Но этот выбор может быть не лучшим.

В зависимости от того, насколько давно задача А была вытеснена, мы можем захотеть, а можем и не захотеть начать ее выполнение на процессоре 2. Если задача вытеснена недавно, то в кэше процессора 1 по-прежнему находятся команды и данные задачи А. Направление задачи на процессор 2 означало бы, что кэш процессора 2 должен быть перезагружен в результате промахов, что снизит производительность, как данной задачи, так и системы. В данном случае, лучшим выходом было бы начать выполнение на процессоре 2 какой-либо следующей задачи и подождать, пока для задачи А освободится процессор 1.

Мы только что описали понятие сродства кэша (cache affinity). Говорят, что данная задача имеет сродство с некоторым процессором на основании содержимого его кэша. Диспетчеризация задач на многопроцессорной версии AS/400 использует комбинацию приоритета, сродства кэша и еще одной характеристики, под названием приемлемость (eligibility). Приемлемость используют, чтобы ограничить возможный набор процессоров для исполнения данной задачи. Приемлемость никогда не изменяется диспетчером задач. Если все процессоры, для которых приемлемо исполнение данной задачи, заняты задачами более высокого приоритета, то данная задача не направляется на выполнение.

Итак, задача отправляется на выполнение только в том случае, если доступен процессор, для которого она имеет сродство кэша. Исключение из этого правила делается тогда, когда его соблюдение может привести к простою процессора или если пропускается значительное число задач высокого приоритета в TDQ. Пороговое значение пропуска зависит от числа процессоров и устанавливается SLIC для конкретной системы. Если число пропущенных задач достигает порогового значения, то сродство игнорируется и задача направляет на любой процессор, для которого она приемлема. Если в процессе пропуска задач был достигнут конец TDQ, прежде чем каждому процессору назначена какая-либо задача, то порог пропуска динамически снижается до тех пор, пока не останется либо незанятых процессоров, либо пропущенных задач.

Для диспетчеризации задачи на мультипроцессорной системе используются три поля TDE, а именно:

Поле приемлемости, где содержится по одному биту на каждый процессор в системе. Если бит установлен, то задача приемлема для выполнения на соответствующем процессоре. Если установлены все биты, то задача приемлема для выполнения на всех процессорах.

Поле активности, включающее по одному биту на каждый процессор в системе и указывающее процессор, на котором данная задача в настоящий момент активна. Может быть установлен максимум один бит, если задача выполняется. В противном случае, все биты сброшены.

Поле сродства содержит по одному биту на каждый процессор в системе и указывает процессор, на котором данная задача исполнялась в последний раз.

Помимо только что описанной поддержки многопроцессорных систем, AS/400 может иметь множественные TDQ. Данный механизм был включен в оригинальную System/38, чтобы обеспечить диспетчеризацию нескольких очередей, но не использовался там для этой цели. Если число процессоров возрастет настолько, что одиночная TDQ станет тормозить работу системы, то диспетчеризацию можно будет осуществлять с помощью нескольких TDQ.

Современные n-канальные процессоры используют модель SMP с разделяемой памятью, в которой все процессоры работают с одной и той же памятью. В главе 12 мы рассмотрим другие модели SMP, которые найдут применение в будущих системах AS/ 400. Все они поддерживаются существующей структурой задач.


Мультипроцессирование | Основы AS|400 | Асимметричное мультипроцессирование